login
A308120
Take all the integer-sided triangles with perimeter n and prime sides a, b, and c such that a <= b <= c. a(n) is the sum of all the b's.
0
0, 0, 0, 0, 0, 2, 2, 3, 3, 0, 3, 5, 5, 0, 10, 7, 12, 0, 7, 0, 7, 0, 7, 11, 18, 0, 29, 13, 35, 0, 24, 0, 24, 0, 35, 17, 43, 0, 71, 19, 77, 0, 62, 0, 49, 0, 83, 23, 91, 0, 76, 0, 76, 0, 38, 0, 59, 0, 101, 29, 67, 0, 140, 31, 194, 0, 121, 0, 125, 0, 104, 0, 83
OFFSET
1,6
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * A010051(i) * A010051(k) * A010051(n-i-k) * i.
MATHEMATICA
Table[Sum[Sum[i (PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A308109.
Sequence in context: A164089 A300290 A068460 * A143797 A319772 A079729
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 13 2019
STATUS
approved