OFFSET
0,2
COMMENTS
Also known as Ackermann-Peter function.
The next term is 2^65536-3.
This is a computable function that is not primitive recursive.
REFERENCES
R. Peter, Rekursive Funktionen in der Komputer-Theorie. Budapest: Akad. Kiado, 1951.
LINKS
W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118-133.
R. C. Buck, Mathematical induction and recursive definitions, Amer. Math. Monthly, 70 (1963), 128-135.
E. Weisstein, Mathworld, Ackermann function.
Wikipedia, Ackermann function.
FORMULA
A(1,n) = 2+(n+3) - 3 = n + 2.
A(2,n) = 2*(n+3) - 3 = 2n + 3.
A(3,n) = 2^(n+3) - 3.
A(4,n) = 2^^(n+3)- 3 (a power tower of n+3 two's).
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Benoit Jubin, Sep 01 2008
STATUS
approved