login
A143268
a(n) = phi(n)*T(n), where phi(n) is Euler's totient function (A000010) and T(n) = n*(n+1)/2 is the n-th triangular number (A000217).
1
1, 3, 12, 20, 60, 42, 168, 144, 270, 220, 660, 312, 1092, 630, 960, 1088, 2448, 1026, 3420, 1680, 2772, 2530, 6072, 2400, 6500, 4212, 6804, 4872, 12180, 3720, 14880, 8448, 11220, 9520, 15120, 7992, 25308, 13338, 18720, 13120, 34440, 10836, 39732
OFFSET
1,2
FORMULA
a(n) = sum of n-th row of triangle A143267.
a(n) = n*(n+1)*phi(n)/2. - Emeric Deutsch, Aug 23 2008
EXAMPLE
a(4) = 20 = phi(4) * T(4) = 2 * 10.
a(4) = 20 = sum of row 4 terms of triangle A143267: (2 + 4 + 6 + 8).
MAPLE
with(numtheory): seq((1/2)*n*(n+1)*phi(n), n=1..45); # Emeric Deutsch, Aug 23 2008
PROG
(PARI) a(n)=eulerphi(n)*n*(n+1)/2 \\ Charles R Greathouse IV, Mar 05 2013
CROSSREFS
Sequence in context: A063102 A122576 A212760 * A374072 A193558 A256131
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Aug 03 2008
EXTENSIONS
Extended by Emeric Deutsch, Aug 16 2008
STATUS
approved