login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142583
A triangle sequence based on a prime root product using a primorial function: f(n)=primorial(n); p(x,n)=If[n == 0, 1, f(n)*(x + 1/f(n))*Product[x + Prime[i], {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).
0
1, 1, 1, 2, 5, 2, 6, 41, 31, 6, 30, 931, 940, 301, 30, 210, 44347, 51971, 21227, 3571, 210, 2310, 5339027, 6762728, 3137268, 665308, 64681, 2310, 30030, 901841261, 1212061411, 618052532, 153213712, 19579601, 1231231, 30030, 510510
OFFSET
1,4
COMMENTS
Row sums are:
{1, 2, 9, 84, 2232, 121536, 15973632, 2906039808, 889220312064, 337903091527680, 186522488129617920}.
FORMULA
f(n)=primorial(n); p(x,n)=If[n == 0, 1, f(n)*(x + 1/f(n))*Product[x + Prime[i], {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).
EXAMPLE
{1},
{1, 1},
{2, 5, 2},
{6, 41, 31, 6},
{30, 931, 940, 301, 30},
{210, 44347, 51971, 21227, 3571, 210},
{2310, 5339027, 6762728, 3137268, 665308, 64681, 2310},
{30030, 901841261, 1212061411, 618052532, 153213712, 19579601, 1231231, 30030},
{510510, 260621176267, 365610805408, 199220508695, 54785396836, 8263116209, 688678048, 29609581, 510510},
{9699690, 94084000213783, 136937156748959, 78865165215633, 23562710455719, 4023906738627, 405611939181, 23773940267, 746876131, 9699690},
{223092870, 49770428979243299, 74603683500398660, 44869225596233918, 14278572367678410, 2670588974929140, 307118568654990, 21905488909522, 941898097240, 22309287001, 223092870}
MATHEMATICA
Clear[a, p, n] a[0] = 1; a[n_] := a[n] = Prime[n]*a[n - 1]; aa = Table[a[n], {n, 0, 20}]; p[x_, n_] = If[n == 0, 1, aa[[n]]*(x + 1/aa[[n]])*Product[x + Prime[i], {i, 1, n - 1}]]; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A267090 A067948 A142148 * A327838 A086956 A198570
KEYWORD
nonn,uned
AUTHOR
STATUS
approved