login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A triangle sequence based on a prime root product using a primorial function: f(n)=primorial(n); p(x,n)=If[n == 0, 1, f(n)*(x + 1/f(n))*Product[x + Prime[i], {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).
0

%I #4 Jul 10 2019 21:23:44

%S 1,1,1,2,5,2,6,41,31,6,30,931,940,301,30,210,44347,51971,21227,3571,

%T 210,2310,5339027,6762728,3137268,665308,64681,2310,30030,901841261,

%U 1212061411,618052532,153213712,19579601,1231231,30030,510510

%N A triangle sequence based on a prime root product using a primorial function: f(n)=primorial(n); p(x,n)=If[n == 0, 1, f(n)*(x + 1/f(n))*Product[x + Prime[i], {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).

%C Row sums are:

%C {1, 2, 9, 84, 2232, 121536, 15973632, 2906039808, 889220312064, 337903091527680, 186522488129617920}.

%F f(n)=primorial(n); p(x,n)=If[n == 0, 1, f(n)*(x + 1/f(n))*Product[x + Prime[i], {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).

%e {1},

%e {1, 1},

%e {2, 5, 2},

%e {6, 41, 31, 6},

%e {30, 931, 940, 301, 30},

%e {210, 44347, 51971, 21227, 3571, 210},

%e {2310, 5339027, 6762728, 3137268, 665308, 64681, 2310},

%e {30030, 901841261, 1212061411, 618052532, 153213712, 19579601, 1231231, 30030},

%e {510510, 260621176267, 365610805408, 199220508695, 54785396836, 8263116209, 688678048, 29609581, 510510},

%e {9699690, 94084000213783, 136937156748959, 78865165215633, 23562710455719, 4023906738627, 405611939181, 23773940267, 746876131, 9699690},

%e {223092870, 49770428979243299, 74603683500398660, 44869225596233918, 14278572367678410, 2670588974929140, 307118568654990, 21905488909522, 941898097240, 22309287001, 223092870}

%t Clear[a, p, n] a[0] = 1; a[n_] := a[n] = Prime[n]*a[n - 1]; aa = Table[a[n], {n, 0, 20}]; p[x_, n_] = If[n == 0, 1, aa[[n]]*(x + 1/aa[[n]])*Product[x + Prime[i], {i, 1, n - 1}]]; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]

%K nonn,uned

%O 1,4

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 21 2008