login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142147
Irregular triangle read by rows: first row is 1, and the n-th row gives the coefficients in the expansion of (1/2*x)*(1 - 2*x*(1 - x))^(n + 1)*Li(-n, 2*x*(1 - x)), where Li(n, z) is the polylogarithm.
8
1, 1, -1, 1, 1, -4, 2, 1, 7, -12, -4, 12, -4, 1, 21, 0, -102, 100, 4, -32, 8, 1, 51, 160, -532, -24, 904, -672, 48, 80, -16, 1, 113, 980, -1094, -5128, 8760, -736, -6224, 3920, -432, -192, 32, 1, 239, 4284, 5276, -43964, 19764, 90272, -114080, 19824, 36304
OFFSET
0,6
LINKS
Eric Weisstein's World of Mathematics, Polylogarithm
FORMULA
E.g.f.: ((1 - x)*(1 - 2*x)*exp(t*(1 + 2*x^2)) + x*exp(2*t*x))/(exp(2*t*x) - 2*x*(1 - x)*exp(t*(1 + 2*x^2))). - Franck Maminirina Ramaharo, Oct 22 2018
EXAMPLE
Triangle begins:
1;
1, -1;
1, 1, -4, 2;
1, 7, -12, -4, 12, -4;
1, 21, 0, -102, 100, 4, -32, 8;
1, 51, 160, -532, -24, 904, -672, 48, 80, -16;
... reformatted. - Franck Maminirina Ramaharo, Oct 21 2018
MATHEMATICA
p[x_, n_] = If[n == 0, 1, (1 + 2*(-1 + x)*x)^(n + 1)*PolyLog[-n, 2*x*(1 - x)]/(2*x)];
Table[CoefficientList[FullSimplify[Expand[p[x, n]]], x], {n, 0, 10}]//Flatten
CROSSREFS
Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.
Sequence in context: A039962 A046741 A136249 * A291977 A142073 A193559
KEYWORD
sign,tabf
AUTHOR
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 21 2018
STATUS
approved