login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168292
T(n,k) = 24*A046802(n+1,k+1) - 9*A008518(n,k) - 8*A007318(n,k), triangle read by rows (0 <= k <= n).
8
7, 7, 7, 7, 38, 7, 7, 99, 99, 7, 7, 220, 546, 220, 7, 7, 461, 2236, 2236, 461, 7, 7, 942, 8001, 15596, 8001, 942, 7, 7, 1903, 26697, 89921, 89921, 26697, 1903, 7, 7, 3824, 85660, 463520, 796594, 463520, 85660, 3824, 7, 7, 7665, 268530, 2224350, 6068400
OFFSET
0,1
FORMULA
E.g.f.: 24*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 9*(exp(t) - x*exp(t*x))/(exp(t*x) - x*exp(t)) - 8*exp(t*(1 + x)).
EXAMPLE
Triangle begins:
7;
7, 7;
7, 38, 7;
7, 99, 99, 7;
7, 220, 546, 220, 7;
7, 461, 2236, 2236, 461, 7;
7, 942, 8001, 15596, 8001, 942, 7;
7, 1903, 26697, 89921, 89921, 26697, 1903, 7;
7, 3824, 85660, 463520, 796594, 463520, 85660, 3824, 7;
... reformatted. - Franck Maminirina Ramaharo, Oct 21 2018
PROG
(Maxima)
A123125(n, k) := sum((-1)^(k - j)*(binomial(n - j, k - j))*stirling2(n, j)*j!, j, 0, k)$
A046802(n, k) := sum(binomial(n - 1, r)*A123125(r, k - 1), r, k - 1, n - 1)$
A008518(n, k) := A123125(n, k) + A123125(n, k + 1)$
T(n, k) := 24*A046802(n + 1, k + 1) - 9*A008518(n, k) - 8*binomial(n, k)$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 21 2018 */
CROSSREFS
Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.
Sequence in context: A337537 A003880 A084503 * A024733 A252732 A360807
KEYWORD
nonn,easy,less,tabl
AUTHOR
Roger L. Bagula, Nov 22 2009
EXTENSIONS
Edited, new name from Franck Maminirina Ramaharo, Oct 21 2018
STATUS
approved