Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 22 2018 09:57:42
%S 1,1,-1,1,1,-4,2,1,7,-12,-4,12,-4,1,21,0,-102,100,4,-32,8,1,51,160,
%T -532,-24,904,-672,48,80,-16,1,113,980,-1094,-5128,8760,-736,-6224,
%U 3920,-432,-192,32,1,239,4284,5276,-43964,19764,90272,-114080,19824,36304
%N Irregular triangle read by rows: first row is 1, and the n-th row gives the coefficients in the expansion of (1/2*x)*(1 - 2*x*(1 - x))^(n + 1)*Li(-n, 2*x*(1 - x)), where Li(n, z) is the polylogarithm.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>
%F E.g.f.: ((1 - x)*(1 - 2*x)*exp(t*(1 + 2*x^2)) + x*exp(2*t*x))/(exp(2*t*x) - 2*x*(1 - x)*exp(t*(1 + 2*x^2))). - _Franck Maminirina Ramaharo_, Oct 22 2018
%e Triangle begins:
%e 1;
%e 1, -1;
%e 1, 1, -4, 2;
%e 1, 7, -12, -4, 12, -4;
%e 1, 21, 0, -102, 100, 4, -32, 8;
%e 1, 51, 160, -532, -24, 904, -672, 48, 80, -16;
%e ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
%t p[x_, n_] = If[n == 0, 1, (1 + 2*(-1 + x)*x)^(n + 1)*PolyLog[-n, 2*x*(1 - x)]/(2*x)];
%t Table[CoefficientList[FullSimplify[Expand[p[x, n]]], x], {n, 0, 10}]//Flatten
%Y Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.
%Y Cf. A142175, A168287, A168288, A168289, A168290, A168291, A168292, A168293.
%K sign,tabf
%O 0,6
%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 15 2008
%E Edited, new name, and offset corrected by _Franck Maminirina Ramaharo_, Oct 21 2018