login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140320
a(n) = A137576((3^n-1)/2).
0
1, 3, 13, 55, 217, 811, 2917, 10207, 34993, 118099, 393661, 1299079, 4251529, 13817467, 44641045, 143489071, 459165025, 1463588515, 4649045869, 14721978583, 46490458681, 146444944843, 460255540933, 1443528742015, 4518872583697, 14121476824051, 44059007691037, 137260754729767
OFFSET
0,2
COMMENTS
Conjecture. a(n) = 2n*3^(n-1)+1.
If conjecture is true then limsup(A137576(n)/n)=infinity while liminf(A137576(n)/n)=2 with a realization on primes.
a(n) is also the number of edges in the graph generated from the n-dimensional hypercube (plus 1) in the following manner: connect all (d + 1)-dimensional faces to the d faces that are incident. Each d-dimensional face should be incident on (n - d) (d + 1)-dimensional faces. [Roy Liu (royliu(AT)cs.ucsd.edu), Jul 26 2010]
FORMULA
Sum_{m = 0}^{n} 2^(n - m) * binomial(n,m) is the number of m-dimensional faces in the n-dimensional hypercube. Consequently, Sum_{m = 0..n} (n - m) * 2^(n - m) * binomial(n,m) gives the number of incidence edges, which yields said sequence minus 1. The recurrence relation is: a(n) = 3 * a(n - 1) + 2 * 3^(n - 1) - 2. [Roy Liu (royliu(AT)cs.ucsd.edu), Jul 26 2010]
Empirical G.f.: (1-4*x+7*x^2)/(1-7*x+15*x^2-9*x^3). [Colin Barker, Jan 09 2012]
PROG
(PARI) a137576(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1;
a(n) = a137576((3^n-1)/2); \\ Michel Marcus, Dec 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 26 2008
EXTENSIONS
More terms from Michel Marcus, Dec 18 2018
STATUS
approved