login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354505
Expansion of e.g.f. ( Product_{k>0} (1 + x^k)^(1/k!) )^exp(x).
1
1, 1, 3, 13, 54, 291, 1778, 12167, 82869, 655100, 5658257, 51691806, 454932679, 4527660281, 48270581011, 553646849053, 5561424579562, 72988254250439, 1010390962699396, 12295679951427509, 67360732923382327, 1515500302797716376, 45199587363022824107, 1001538050395504921200, -699211952404047871075
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A354509(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+x^k)^(1/k!))^exp(x)))
(PARI) a354509(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(d+1)/(d*(k/d)!))/(n-k)!);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354509(j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
Sequence in context: A323264 A362495 A305655 * A308349 A367153 A140320
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 15 2022
STATUS
approved