login
A140006
Primes of the form 15x^2+88y^2.
1
103, 223, 367, 463, 487, 727, 823, 1087, 1303, 1423, 1543, 1567, 1783, 2143, 2887, 3463, 3727, 3943, 4327, 4423, 4447, 4783, 5503, 5527, 5647, 5743, 6007, 6367, 6703, 6823, 6967, 7687, 8167, 8287, 8647, 9007, 9343, 9463, 9967, 10663, 11047
OFFSET
1,1
COMMENTS
Discriminant = -5280. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {103, 223, 247, 367, 463, 487, 727, 823, 1087, 1303} (mod 1320).
MATHEMATICA
QuadPrimes2[15, 0, 88, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [103, 223, 247, 367, 463, 487, 727, 823, 1087, 1303]]; // Vincenzo Librandi, Aug 04 2012
CROSSREFS
Sequence in context: A044716 A260470 A134551 * A142911 A077408 A134214
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved