%I #17 Sep 08 2022 08:45:34
%S 103,223,367,463,487,727,823,1087,1303,1423,1543,1567,1783,2143,2887,
%T 3463,3727,3943,4327,4423,4447,4783,5503,5527,5647,5743,6007,6367,
%U 6703,6823,6967,7687,8167,8287,8647,9007,9343,9463,9967,10663,11047
%N Primes of the form 15x^2+88y^2.
%C Discriminant = -5280. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A140006/b140006.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {103, 223, 247, 367, 463, 487, 727, 823, 1087, 1303} (mod 1320).
%t QuadPrimes2[15, 0, 88, 10000] (* see A106856 *)
%o (Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [103, 223, 247, 367, 463, 487, 727, 823, 1087, 1303]]; // _Vincenzo Librandi_, Aug 04 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008