login
A139958
Primes of the form 8x^2+51y^2.
1
59, 83, 179, 251, 443, 467, 491, 563, 587, 659, 971, 1019, 1259, 1283, 1307, 1427, 1619, 1667, 1787, 1811, 2027, 2099, 2243, 2531, 2699, 2843, 2939, 3011, 3251, 3299, 3323, 3347, 3467, 3659, 3851, 3923, 4139, 4259, 4283, 4523, 4547, 4643
OFFSET
1,1
COMMENTS
Discriminant=-1632. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {35, 59, 83, 155, 179, 203, 251, 395} (mod 408).
MATHEMATICA
QuadPrimes2[8, 0, 51, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(5000) | p mod 408 in [35, 59, 83, 155, 179, 203, 251, 395]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A304356 A283146 A068209 * A097459 A145291 A136076
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved