The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283146 Prime numbers p whose square divides a number of the form n^n + (-1)^n (n-1)^(n-1), where n is a positive integer. 1
 59, 83, 179, 193, 337, 419, 421, 443, 457, 547, 601, 619, 701, 787, 857, 887, 911, 929, 977, 1039, 1091, 1093, 1109, 1193, 1217, 1223, 1237, 1259, 1289, 1439, 1487, 1489, 1493, 1613, 1637, 1657, 1811, 1847, 1901, 1993, 1997, 2003, 2087, 2089, 2113, 2377, 2389, 2423, 2437, 2477 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For a given prime p, it has been proved that the set of all n for which p^2 divides n^n + (-1)^n (n-1)^(n-1) is some set of residue classes mod p(p-1). Therefore testing all values of n up to p(p-1) will determine whether p is in this list. There are far more efficient ways to determine if p is indeed in the list, described by Boyd, Martin, and Thom in their paper. LINKS William Lewis Craig, Table of n, a(n) for n = 1..10052 David W. Boyd, Greg Martin, and Mark Thom, Squarefree values of trinomial discriminants, arXiv 1402.5148 [math.NT], 2014. MATHEMATICA Reap[For[p = 2, p < 1000, p = NextPrime[p], If[AnyTrue[Range[2, p(p-1)], Mod[PowerMod[#, #, p^2] + (-1)^# PowerMod[#-1, #-1, p^2], p^2] == 0&], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Sep 25 2018 *) PROG (PARI) isok(p) = {for (n=2, p*(p-1), if (((n^n + (-1)^n*(n-1)^(n-1)) % p^2) == 0, return (1)); ); } lista(nn) = forprime(p=2, nn, if (isok(p), print1(p, ", "))) \\ Michel Marcus, Aug 01 2017 CROSSREFS Values of n for which square divisors occur are A238194. Sequence in context: A026050 A347804 A304356 * A068209 A139958 A097459 Adjacent sequences: A283143 A283144 A283145 * A283147 A283148 A283149 KEYWORD nonn AUTHOR William Lewis Craig, Mar 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 23:34 EDT 2024. Contains 373629 sequences. (Running on oeis4.)