login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139868
Primes of the form 3x^2 + 55y^2.
1
3, 67, 103, 163, 223, 367, 463, 487, 643, 727, 823, 883, 907, 1087, 1123, 1303, 1423, 1483, 1543, 1567, 1747, 1783, 2083, 2143, 2203, 2347, 2467, 2707, 2803, 2887, 3067, 3463, 3547, 3727, 3943, 4027, 4327, 4423, 4447, 4603, 4723, 4783, 4987
OFFSET
1,1
COMMENTS
Discriminant = -660. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 67, 103, 163, 223, 247, 367, 427, 463, 487, 643} (mod 660).
MATHEMATICA
QuadPrimes2[3, 0, 55, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 660 in {3, 67, 103, 163, 223, 247, 367, 427, 463, 487, 643}]; // Vincenzo Librandi, Jul 30 2012
(PARI) list(lim)=my(v=List(), w, t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\55), if(isprime(t=w+55*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017
CROSSREFS
Sequence in context: A105443 A065425 A096482 * A110716 A142035 A142926
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved