login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139862
Primes of the form 5x^2 + 26y^2.
1
5, 31, 71, 109, 149, 151, 229, 239, 271, 349, 359, 421, 431, 461, 479, 509, 541, 631, 661, 709, 821, 839, 941, 1021, 1061, 1151, 1181, 1229, 1279, 1319, 1399, 1471, 1549, 1669, 1709, 1789, 1831, 1861, 1879, 2039, 2069, 2111, 2221, 2269, 2309
OFFSET
1,1
COMMENTS
Discriminant = -520. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {5, 21, 31, 71, 109, 111, 119, 141, 149, 151, 189, 229, 239, 271, 279, 301, 319, 349, 359, 421, 431, 461, 479, 501, 509} (mod 520).
MATHEMATICA
QuadPrimes2[5, 0, 26, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 520 in {5, 21, 31, 71, 109, 111, 119, 141, 149, 151, 189, 229, 239, 271, 279, 301, 319, 349, 359, 421, 431, 461, 479, 501, 509}]; // Vincenzo Librandi, Jul 29 2012
(PARI) list(lim)=my(v=List(), w, t); for(x=1, sqrtint(lim\5), w=5*x^2; for(y=0, sqrtint((lim-w)\26), if(isprime(t=w+26*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017
CROSSREFS
Sequence in context: A333243 A078686 A031908 * A299505 A102732 A213068
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved