login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139553
Triangle read by rows: T(n,k) = if n>=4*k and n<4*k*A014963(k) then k else 1; T(n,0)=1.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,39
COMMENTS
Row products give A139554.
EXAMPLE
Row products of the triangle are:
1 = 1
1*1 = 1
1*1*1 = 1
1*1*1*1 = 1
1*1*1*1*1 = 1
1*1*1*1*1*1 = 1
1*1*1*1*1*1*1 = 1
1*1*1*1*1*1*1*1 = 1
1*1*2*1*1*1*1*1*1 = 2
PROG
(Excel) =if(and(row()-1>=(column()-1)*4; row()-1 < A014963(k-1)*(column()-1)*4); column()-1; 1)
(PARI)
up_to = 23220; \\ binomial(215+1, 2)
A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); }; \\ From A014963 by Charles R Greathouse IV, Jun 10 2011
A139553tr(n, k) = if(0==k, 1, if((n>=(4*k))&&(n<(4*k*A014963(k))), k, 1));
A139553list(up_to) = { my(v = vector(up_to), i=0); for(n=1, oo, for(k=1, n, i++; if(i > up_to, return(v)); v[i] = A139553tr(n-1, k-1))); (v); };
v139553 = A139553list(up_to);
A139553(n) = v139553[1+n]; \\ Antti Karttunen, Jan 03 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Apr 27 2008
EXTENSIONS
Typo in the definition corrected by Antti Karttunen, Jan 03 2019
STATUS
approved