login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139082 a(n) = (largest power of a prime dividing n) * (largest power of a prime dividing (n+1)). 3
2, 6, 12, 20, 15, 21, 56, 72, 45, 55, 44, 52, 91, 35, 80, 272, 153, 171, 95, 35, 77, 253, 184, 200, 325, 351, 189, 203, 145, 155, 992, 352, 187, 119, 63, 333, 703, 247, 104, 328, 287, 301, 473, 99, 207, 1081, 752, 784, 1225, 425, 221, 689, 1431, 297, 88, 152, 551 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The largest prime-power dividing 12 is 4. The largest prime power dividing 13 is 13. So a(12) = 4*13 = 52.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A034699(n)*A034699(n+1). - R. J. Mathar, Apr 16 2008

MAPLE

isA000961 := proc(n) if nops(ifactors(n)[2]) =1 then true ; else false ; fi ; end: A034699 := proc(n) local dvs, d ; if n = 1 then RETURN(1) ; fi ; dvs := sort(convert(numtheory[divisors](n), list), `>`) ; for d in dvs do if isA000961(d) then RETURN(d) ; fi ; od: RETURN(0) ; end: A139082 := proc(n) A034699(n)*A034699(n+1) ; end: seq(A139082(n), n=1..100) ; # R. J. Mathar, Apr 16 2008

MATHEMATICA

Times @@ # & /@ Partition[Array[Max@ Map[Power @@ # &, FactorInteger@ #] &, 58], 2, 1] (* Michael De Vlieger, Oct 22 2017 *)

CROSSREFS

Cf. A139081, A139084.

Sequence in context: A130492 A305702 A152222 * A061078 A067114 A102711

Adjacent sequences:  A139079 A139080 A139081 * A139083 A139084 A139085

KEYWORD

nonn

AUTHOR

Leroy Quet, Apr 07 2008

EXTENSIONS

More terms from R. J. Mathar, Apr 16 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 16:32 EDT 2022. Contains 354071 sequences. (Running on oeis4.)