login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138800
Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.
2
1, 1, 2, 6, 19, 76, 320, 1469, 7048, 35233, 181656, 960800, 5189579
OFFSET
1,3
EXAMPLE
a(4)=6 because discriminant of quartic x^4+a*x^2+b*x+c is -4*a^3*b^2 - 27*b^4 + 16*a^4*c + 144*a*b^2*c - 128*a^2*c^2 + 256*c^3 that consists of 6 monomials (parts).
MAPLE
1, 1, seq(nops(expand(discrim(x^n + add(c[i]*x^i, i=0..n-2), x))), n=3..12); # Robert Israel, Aug 10 2015
MATHEMATICA
ClearAll[f]; a = {1, 1}; Do[k = 0; Do[If[n > s - 2, If[n > s - 1, k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 8}]; a (* fixed by Vaclav Kotesovec, Mar 20 2019 *)
Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-2}], x]], {n, 3, 8}]}] (* Vaclav Kotesovec, Mar 20 2019 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Mar 30 2008
EXTENSIONS
a(2) and Mathematica program corrected [previously had erroneous a(2)=2 because of Length syntax in Mathematica] by Alan Sokal and Andrea Sportiello (sokal(AT)nyu.edu), Jun 17 2010
a(9) to a(12) from Robert Israel, Aug 10 2015
a(13) from Vaclav Kotesovec, Mar 28 2019
STATUS
approved