login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008989
Number of immersions of an unoriented circle into the unoriented sphere with n double points.
12
1, 1, 2, 6, 19, 76, 376, 2194, 14614, 106421, 823832, 6657811, 55557329, 475475046, 4155030702, 36959470662, 333860366236
OFFSET
0,3
REFERENCES
V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994, p. 18.
LINKS
J. Cantarella, H. Chapman, and M. Mastin, Knot Probabilities in Random Diagrams, arXiv preprint arXiv:1512.05749 [math.GT], 2015. Also Journal of Physics A: Mathematical and Theoretical, Vol. 49, No. 40 (2016), DOI: 10.1088/1751-8113/49/40/405001
R. Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015-2016. Also J. Knot Theory Ramifications 25, 1650047 (2016), 10.1142/S0218216516500474.
Guy Valette, A Classification of Spherical Curves Based on Gauss Diagrams, Arnold Math J. (2016) 2:383-405.
EXAMPLE
G.f. = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 76*x^5 + 376*x^6 + 2194*x^7 + ...
PROG
(Magma) // see A260914
CROSSREFS
Cf. A008986, A008987, A008988, A264759, A277739. First line of triangle A260914.
Sequence in context: A268569 A181770 A138800 * A057240 A079564 A273988
KEYWORD
nonn,more
EXTENSIONS
a(6)-a(7) from Guy Valette, Feb 09 2004
a(8)-a(9) from Robert Coquereaux and Jean-Bernard Zuber, Jul 21 2015
a(10) from same source added by N. J. A. Sloane, Mar 03 2016
a(11)-a(14) from Brendan McKay, Mar 11 2023
a(15)-a(16) from Brendan McKay, Mar 29 2024
STATUS
approved