login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.
2

%I #33 Mar 28 2019 11:41:11

%S 1,1,2,6,19,76,320,1469,7048,35233,181656,960800,5189579

%N Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.

%e a(4)=6 because discriminant of quartic x^4+a*x^2+b*x+c is -4*a^3*b^2 - 27*b^4 + 16*a^4*c + 144*a*b^2*c - 128*a^2*c^2 + 256*c^3 that consists of 6 monomials (parts).

%p 1, 1, seq(nops(expand(discrim(x^n + add(c[i]*x^i,i=0..n-2),x))),n=3..12); # _Robert Israel_, Aug 10 2015

%t ClearAll[f]; a = {1,1}; Do[k = 0; Do[If[n > s - 2, If[n > s - 1, k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 8}]; a (* fixed by _Vaclav Kotesovec_, Mar 20 2019 *)

%t Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-2}], x]], {n, 3, 8}]}] (* _Vaclav Kotesovec_, Mar 20 2019 *)

%Y Cf. A007878, A138787, A138788, A138801, A138802.

%K nonn,more

%O 1,3

%A _Artur Jasinski_, Mar 30 2008

%E a(2) and Mathematica program corrected [previously had erroneous a(2)=2 because of Length syntax in Mathematica] by Alan Sokal and Andrea Sportiello (sokal(AT)nyu.edu), Jun 17 2010

%E a(9) to a(12) from _Robert Israel_, Aug 10 2015

%E a(13) from _Vaclav Kotesovec_, Mar 28 2019