OFFSET
1,1
COMMENTS
Differences (p^k - p^m)/q with k > m:
expression OEIS sequence
-------------- -------------
p^2 - p A036689
(p^2 - p)/2 A008837
p^3 - p A127917
(p^3 - p)/2 A127918
(p^3 - p)/3 A127919
(p^3 - p)/6 A127920
p^3 - p^2 A135177
(p^3 - p^2)/2 this sequence
p^4 - p A138401
(p^4 - p)/2 A138417
p^4 - p^2 A138402
(p^4 - p^2)/2 A138418
(p^4 - p^2)/3 A138419
(p^4 - p^2)/4 A138420
(p^4 - p^2)/6 A138421
(p^4 - p^2)/12 A138422
p^4 - p^3 A138403
(p^4 - p^3)/2 A138423
p^5 - p A138404
(p^5 - p)/2 A138424
(p^5 - p)/3 A138425
(p^5 - p)/5 A138426
(p^5 - p)/6 A138427
(p^5 - p)/10 A138428
(p^5 - p)/15 A138429
(p^5 - p)/30 A138430
p^5 - p^2 A138405
(p^5 - p^2)/2 A138431
p^5 - p^3 A138406
(p^5 - p^3)/2 A138432
(p^5 - p^3)/3 A138433
(p^5 - p^3)/4 A138434
(p^5 - p^3)/6 A138435
(p^5 - p^3)/8 A138436
(p^5 - p^3)/12 A138437
(p^5 - p^3)/24 A138438
p^5 - p^4 A138407
(p^5 - p^4)/2 A138439
p^6 - p A138408
(p^6 - p)/2 A138440
p^6 - p^2 A138409
(p^6 - p^2)/2 A138441
(p^6 - p^2)/3 A138442
(p^6 - p^2)/4 A138443
(p^6 - p^2)/5 A138444
(p^6 - p^2)/6 A138445
(p^6 - p^2)/10 A138446
(p^6 - p^2)/12 A138447
(p^6 - p^2)/15 A138448
(p^6 - p^2)/20 A122220
(p^6 - p^2)/30 A138450
(p^6 - p^2)/60 A138451
p^6 - p^3 A138410
(p^6 - p^3)/2 A138452
p^6 - p^4 A138411
(p^6 - p^4)/2 A138453
(p^6 - p^4)/3 A138454
(p^6 - p^4)/4 A138455
(p^6 - p^4)/6 A138456
(p^6 - p^4)/8 A138457
(p^6 - p^4)/12 A138458
(p^6 - p^4)/24 A138459
p^6 - p^5 A138412
(p^6 - p^5)/2 A138460
.
We can prove that for n>1, a(n) is the remainder of the Euclidean division of Sum_{k=0..p-1} k^p by p^3 where p = prime(n). - Pierre Vandaƫle, Nov 30 2024
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..168
MATHEMATICA
a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
(#^3-#^2)/2&/@Prime[Range[50]] (* Harvey P. Dale, Nov 01 2020 *)
PROG
(PARI) forprime(p=2, 1e3, print1((p^3-p^2)/2", ")) \\ Charles R Greathouse IV, Jun 16 2011
(Magma)[(p^3-p^2)/2: p in PrimesUpTo(1000)]; // Vincenzo Librandi, Jun 17 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Mar 19 2008
EXTENSIONS
Definition corrected by T. D. Noe, Aug 25 2008
STATUS
approved