login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138407 a(n) = p^4*(p-1), where p = prime(n). 5
16, 162, 2500, 14406, 146410, 342732, 1336336, 2345778, 6156502, 19803868, 27705630, 67469796, 113030440, 143589642, 224465326, 410305012, 702806938, 830750460, 1329973986, 1778817670, 2044673352, 3038106318, 3891582322 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Index to sequences related to prime powers

FORMULA

a(n) = A000010(prime(n)^5). - R. J. Mathar, Oct 15 2017

MATHEMATICA

a = {}; Do[p = Prime[n]; AppendTo[a, p^5 - p^4], {n, 1, 50}]; a

f54[n_]:=Module[{c=Prime[n]}, c^5-c^4]; Array[f54, 30] (* Harvey P. Dale, Mar 29 2015 *)

PROG

(PARI) forprime(p=2, 1e3, print1(p^5-p^4", ")) \\ Charles R Greathouse IV, Jun 16 2011

(MAGMA) [NthPrime((n))^5 - NthPrime((n))^4: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011

CROSSREFS

Cf. A030514, A050997.

Sequence in context: A091363 A225897 A275231 * A094857 A274801 A274747

Adjacent sequences:  A138404 A138405 A138406 * A138408 A138409 A138410

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Mar 19 2008

EXTENSIONS

First Mathematica program corrected by Harvey P. Dale, Mar 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)