OFFSET
0,5
COMMENTS
Former name: A signed version of A060187 obtained by taking the Z-transform of p(t,x) = exp(t*(1+2*x)). - G. C. Greubel, Jul 21 2024
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = (-1)^(n+k) * A060187(n+1, k+1).
From G. C. Greubel, Jul 21 2024: (Start)
T(2*n, n) = (-1)^n * A177043(n).
Sum_{k=0..n} T(n, k) = (1/2)*(1 + (-1)^n)*(-1)^floor((n+ 1)/2) * A002436(floor(n/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A000165(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n * A178118(n+1). (End)
EXAMPLE
Triangle begins as:
1;
-1, 1;
1, -6, 1;
-1, 23, -23, 1;
1, -76, 230, -76, 1;
-1, 237, -1682, 1682, -237, 1;
1, -722, 10543, -23548, 10543, -722, 1;
-1, 2179, -60657, 259723, -259723, 60657, -2179, 1;
1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1;
MATHEMATICA
p[t_] = Exp[t]*x/(Exp[2*t] + x);
Table[CoefficientList[(n!*(1+x)^(n+1)/x)*SeriesCoefficient[Series[p[ t], {t, 0, 30}], n], x], {n, 0, 12}]//Flatten
PROG
(Magma)
A060187:= func< n, k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
[A138076(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2024
(SageMath)
@CachedFunction
def t(n, k): # t = A060187
if k==1 or k==n: return 1
return (2*(n-k)+1)*t(n-1, k-1) + (2*k-1)*t(n-1, k)
def A138076(n, k): return (-1)^(n+k)*t(n+1, k+1)
flatten([[A138076(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2024
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Nov 26 2009
STATUS
approved