login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137869
Primes p with property that (p - previous prime) >= 6 and (next prime - p) >= 6.
4
53, 89, 157, 173, 211, 251, 257, 263, 293, 331, 337, 359, 367, 373, 389, 409, 449, 479, 509, 541, 547, 557, 563, 577, 587, 593, 607, 631, 653, 683, 691, 701, 709, 719, 727, 733, 751, 787, 797, 839, 919, 929, 947, 953, 977, 983, 991, 997, 1039, 1069, 1103, 1109, 1117
OFFSET
1,1
LINKS
MAPLE
M:=1000; t1:=[];
for i from 2 to M do
p:=ithprime(i); o:=prevprime(p); q:=nextprime(p);
if p-o >= 6 and q-p >= 6 then t1:=[op(t1), p]; fi; od:
MATHEMATICA
lst={}; Do[p=Prime[n]; If[ !PrimeQ[p-2]&&!PrimeQ[p+2]&&!PrimeQ[p-4]&&!PrimeQ[p+4], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 20 2009 *)
Select[Partition[Prime[Range[200]], 3, 1], Min[Differences[#]]>5&][[;; , 2]] (* Harvey P. Dale, Oct 29 2023 *)
PROG
(PARI) p=q=2; forprime(r=2, 999, r-q>4 & q-p>4 & print1(q", "); p=q; q=r) \\ M. F. Hasler, May 02 2009
(Magma) [p:p in PrimesInInterval(3, 1200)|p-PreviousPrime(p) ge 6 and NextPrime(p)-p ge 6]; // Marius A. Burtea, Aug 11 2019
CROSSREFS
These are the primes not in A167773.
Cf. A053070.
Sequence in context: A272367 A119289 A124282 * A096697 A033234 A266845
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edits and more terms from N. J. A. Sloane, May 02 2009
STATUS
approved