The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266845 Primes p such that p+-2 and p+-4 are semiprimes. 2
 53, 89, 449, 683, 1259, 4283, 6803, 11789, 12781, 13553, 16561, 18593, 18899, 20287, 29303, 35099, 36217, 37619, 52163, 54181, 64763, 65213, 67103, 103769, 115831, 116009, 125551, 126541, 147997, 154043, 155161, 155609, 166013, 173699, 181943, 188911, 190261, 196613 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..2500 EXAMPLE a(1)=53 because 53 - 2 = 51 = 3*17, 53 + 2 = 55 = 5*11. MAPLE filter:= proc(n) andmap(t -> numtheory:-bigomega(t)=2, [n-4, n-2, n+2, n+4]) end proc: select(filter, [seq(ithprime(i), i=1..20000)]); # Robert Israel, Aug 11 2019 MATHEMATICA Select[Prime@ Range@ 18000, AllTrue[# + {-4, -2, 2, 4}, PrimeOmega@ # == 2 &] &] (* Michael De Vlieger, Jan 09 2016, Version 10 *) PROG (PARI) lista(nn) = {forprime(p=5, nn, if (bigomega(p-4)==2 && bigomega(p+4)==2 && bigomega(p-2)==2 && bigomega(p+2)==2, print1(p, ", ")); ); } \\ Michel Marcus, Jan 10 2016 (Magma) IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesInInterval(3, 2*10^5)| IsSemiprime(p+2) and IsSemiprime(p+4)and IsSemiprime(p-2) and IsSemiprime(p-4)]; // Vincenzo Librandi, Jan 10 2016 CROSSREFS Subsequence of A063643. Sequence in context: A137869 A096697 A033234 * A238678 A142296 A180520 Adjacent sequences: A266842 A266843 A266844 * A266846 A266847 A266848 KEYWORD nonn AUTHOR Zak Seidov, Jan 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)