login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A137686
a(n) = Bigomega(Catalan(n)) - round( 3 n /(2 log(n+2))) (= A081399 - A137687).
3
0, -1, -1, -2, -1, -1, 0, -2, -1, -2, -1, -1, -1, 0, 1, -1, 0, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, -1, 1, 0, 1, -2, -1, 0, 0, -2, -1, -1, 1, -1, 0, 2, 2, 2, 2, 1, 3, 1, 2, 0, 2, 1, 1, 1, 1, -1, -1, -1, 1, 0, 2, 3, 3, 0, 0, 0, 1, 0, 3, 2, 2, 0, 2, 3, 3, 2, 2, 3, 4, 1, 0, 1, 1, 1, 1, 1, 3, 1, 4, 2, 2, 1, 2, 2, 3, 2, 3, 1, 2, 0, 1, 0, 2, 1, 2, 2, 3, 1, 3, 2, 3, 1, 2, 3, 3, 2, 3
OFFSET
0,4
COMMENTS
It is easy to show that A081399(n) = bigomega(Catalan(n)) is between n/log(n) and 2n/log(n) (for n>n0). The sequence A137687 is roughly the middle of this interval, which turns out to be a fair approximation to A081399. The present sequence lists the (signed) difference.
LINKS
Douglas M. Campbell, The Computation of Catalan Numbers, Mathematics Magazine, Vol. 57, No. 4. (Sep., 1984), pp. 195-208.
FORMULA
a(n) = A001222(A000108(n)).
PROG
(PARI) A137686(n) = bigomega(prod(i=2, n, (n+i)/i)) - round(3*n/log(n+2)/2)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
M. F. Hasler, Feb 06 2008
STATUS
approved