login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137597
Triangle read by rows: A008277 * A007318.
4
1, 2, 1, 5, 5, 1, 15, 22, 9, 1, 52, 99, 61, 14, 1, 203, 471, 385, 135, 20, 1, 877, 2386, 2416, 1140, 260, 27, 1, 4140, 12867, 15470, 9156, 2835, 455, 35, 1, 21147, 73681, 102215, 72590, 28441, 6230, 742, 44, 1
OFFSET
1,2
COMMENTS
Row sums = A035009 starting (1, 3, 11, 47, 227, ...).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See p. 16.
FORMULA
A008277 * A007318 as infinite lower triangular matrices.
EXAMPLE
First few rows of the triangle:
1;
2, 1;
5, 5, 1;
15, 22, 9, 1;
52, 99, 61, 14, 1;
203, 471, 385, 135, 20, 1;
...
MAPLE
T:= (n, k)-> add(Stirling2(n, j)*binomial(j-1, k-1), j=k..n):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 03 2019
MATHEMATICA
Table[Sum[StirlingS2[n, j]*Binomial[j - 1, k - 1], {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Aug 31 2023 *)
CROSSREFS
Cf. A126350.
Sequence in context: A107842 A126216 A124733 * A059340 A248727 A270250
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 29 2008
STATUS
approved