OFFSET
1,2
COMMENTS
Essentially triangle given by [1,1,1,2,1,3,1,4,1,5,1,6,...] DELTA [0,1,0,2,0,3,0,4,0,5,0,6,...] = [1;1,0;2,1,0;5,5,1,0;15,23,10,1,0;...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 20 2006
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1275
FORMULA
T(n,k) = Sum_{i=0..n} stirling2(n, n-i)*binomial(i, k).
T(n,k) = Sum_{i=0..n} stirling2(n, i)*binomial(n-i, k). - Peter Luschny, Aug 06 2015
EXAMPLE
Triangle starts:
1;
2, 1;
5, 5, 1;
15, 23, 10, 1;
52, 109, 76, 19, 1;
MATHEMATICA
Table[Sum[StirlingS2[n, j]*Binomial[n - j, k], {j, 0, n}], {n, 1,
5}, {k, 0, n - 1}] (* G. C. Greubel, Jan 07 2017 *)
PROG
(Sage)
T = lambda n, k: sum(stirling_number2(n, j)*binomial(n-j, k) for j in (0..n))
# Also "for n in (0..11): print([T(n, k) for k in (0..n)])" makes sense.
for n in (1..11): print([T(n, k) for k in (0..n-1)]) # Peter Luschny, Aug 06 2015
CROSSREFS
KEYWORD
AUTHOR
Vladeta Jovovic, Jan 27 2001
STATUS
approved