Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 31 2023 10:54:36
%S 1,2,1,5,5,1,15,22,9,1,52,99,61,14,1,203,471,385,135,20,1,877,2386,
%T 2416,1140,260,27,1,4140,12867,15470,9156,2835,455,35,1,21147,73681,
%U 102215,72590,28441,6230,742,44,1
%N Triangle read by rows: A008277 * A007318.
%C Row sums = A035009 starting (1, 3, 11, 47, 227, ...).
%H Michael De Vlieger, <a href="/A137597/b137597.txt">Table of n, a(n) for n = 1..11325</a> (rows n = 1..150, flattened)
%H Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, <a href="https://arxiv.org/abs/2308.14183">Combinatorial Identities for Vacillating Tableaux</a>, arXiv:2308.14183 [math.CO], 2023. See p. 16.
%F A008277 * A007318 as infinite lower triangular matrices.
%e First few rows of the triangle:
%e 1;
%e 2, 1;
%e 5, 5, 1;
%e 15, 22, 9, 1;
%e 52, 99, 61, 14, 1;
%e 203, 471, 385, 135, 20, 1;
%e ...
%p T:= (n, k)-> add(Stirling2(n, j)*binomial(j-1, k-1), j=k..n):
%p seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Sep 03 2019
%t Table[Sum[StirlingS2[n, j]*Binomial[j - 1, k - 1], {j, k, n}], {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Aug 31 2023 *)
%Y Cf. A035009, A008277.
%Y Cf. A126350.
%K nonn,tabl
%O 1,2
%A _Gary W. Adamson_, Jan 29 2008