login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137447
a(n) = 4*a(n-4) for n>3, a(0)=-1, a(1)=-4, a(2)=2, a(3)=12.
1
-1, -4, 2, 12, -4, -16, 8, 48, -16, -64, 32, 192, -64, -256, 128, 768, -256, -1024, 512, 3072, -1024, -4096, 2048, 12288, -4096, -16384, 8192, 49152, -16384, -65536, 32768, 196608, -65536, -262144, 131072, 786432, -262144, -1048576, 524288, 3145728, -1048576
OFFSET
0,2
FORMULA
G.f.: (1+4*x-2*x^2-12*x^3)/(4*x^4-1). - Harvey P. Dale, Jun 27 2011
From Bruno Berselli, Nov 02 2011: (Start)
a(n) = (1-(-1)^n-2*(3-2*(-1)^n)*(-1)^floor(n/2))*2^(floor(n/2)-1).
a(2n) = -A122803(n).
a(2n+1) = (-1)^(n+1)*A084221(n+2). (End)
E.g.f.: (1/sqrt(2))*( sinh(sqrt(2)*x) - 5*sin(sqrt(2)*x) - sqrt(2)*cos(sqrt(2)*x) ). - G. C. Greubel, Sep 15 2023
MATHEMATICA
LinearRecurrence[{0, 0, 0, 4}, {-1, -4, 2, 12}, 50] (* or *) CoefficientList[ Series[(1+4x-2x^2-12x^3)/(4x^4-1), {x, 0, 50}], x] (* Harvey P. Dale, Jun 27 2011 *)
PROG
(Magma) &cat[[-(-2)^n, 2^n-5*(-2)^n]: n in [0..20]]; // Bruno Berselli, Nov 02 2011
(SageMath)
def A137447(n): return 2^(n//2)*(-1)^(n//2+1) if n%2==0 else 2^((n-1)//2)*(1 - 5*(-1)^((n-1)//2))
[A137447(n) for n in range(51)] # G. C. Greubel, Sep 15 2023
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Apr 18 2008
EXTENSIONS
More terms from Harvey P. Dale, Jun 27 2011
STATUS
approved