login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137428
Positive integers n which have a composite divisor smaller than their largest prime factor.
3
20, 28, 40, 42, 44, 52, 56, 60, 66, 68, 76, 78, 80, 84, 88, 92, 99, 100, 102, 104, 110, 112, 114, 116, 117, 120, 124, 126, 130, 132, 136, 138, 140, 148, 152, 153, 156, 160, 164, 168, 170, 171, 172, 174, 176, 180, 184, 186, 188, 190, 196, 198, 200, 204, 207, 208
OFFSET
1,1
COMMENTS
The primitive elements of this sequence are those of the form s*p, where s is a semiprime and p a prime larger than s, cf. A252478. Any multiple of these primitive terms is also in the sequence. - M. F. Hasler, Jan 02 2015
EXAMPLE
The positive divisors of 60 are 1,2,3,4,5,6,10,12,15,20,30,60. The divisor 4, a composite, is less than the prime divisor 5. So 60 is in this sequence.
MAPLE
isA137428 := proc(n) local dvs, p, i ; dvs := sort(convert(numtheory[divisors](n) minus{1}, list)) ; for i from 1 to nops(dvs) do if isprime(op(-i, dvs)) then p := op(-i, dvs) ; break ; fi ; od: for i from 1 to nops(dvs) do if op(i, dvs) < p and not isprime(op(i, dvs)) then RETURN(true) ; fi ; od: RETURN(false) ; end: for n from 1 to 400 do if isA137428(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Apr 21 2008
MATHEMATICA
a = {}; For[n = 2, n < 300, n++, If[FactorInteger[n][[ -1, 1]] > Min[Select[ Divisors[n], ! PrimeQ[ # ]&& # > 1 &]], AppendTo[a, n]]]; a (* Stefan Steinerberger, Apr 21 2008 *)
PROG
(PARI) is(n)=#(n=factor(n)~)>1&&n[1, #n]>=n[1, 1]*if(n[2, 1]>1, n[1, 1], n[1, 2]) \\ M. F. Hasler, Jan 02 2015
CROSSREFS
Sequence in context: A139805 A141823 A367632 * A368089 A367455 A350841
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 17 2008
EXTENSIONS
More terms from R. J. Mathar and Stefan Steinerberger, Apr 21 2008
STATUS
approved