login
A135757
Central binomial coefficients at triangular positions: a(n) = A000984(n(n+1)/2).
3
1, 2, 20, 924, 184756, 155117520, 538257874440, 7648690600760440, 442512540276836779204, 103827421287553411369671120, 98527218530093856775578873054432, 377389666165540953244592352291892721700, 5825874245311064218315521996517139009907512400
OFFSET
0,2
LINKS
FORMULA
a(n) = binomial(n(n+1), n(n+1)/2).
a(n) ~ 2^(n^2+n) sqrt(2/Pi) (1/n - 1/(2n^2) + 1/(8n^3) + ...). - Robert Israel, Nov 08 2016
MAPLE
seq(binomial(n*(n+1), n*(n+1)/2), n=0..20); # Robert Israel, Nov 08 2016
MATHEMATICA
Table[Binomial[n*(n + 1), n*(n + 1)/2], {n, 0, 10}] (* G. C. Greubel, Nov 07 2016 *)
PROG
(PARI) a(n)=binomial(n*(n+1), n*(n+1)/2)
(Magma) [Binomial(n*(n+1), n*(n+1) div 2): n in [0..15]]; // Vincenzo Librandi, Nov 08 2016
CROSSREFS
Sequence in context: A276892 A006547 A290883 * A301945 A158843 A008793
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Dec 02 2007
STATUS
approved