login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135756
a(n) = Sum_{k=0..n} C(n,k) * 2^(k*(k-1)).
4
1, 2, 7, 80, 4381, 1069742, 1080096067, 4405584869660, 72092808533798521, 4723015159635987920282, 1237987266193328694390243007, 1298087832233881093828346620725800
OFFSET
0,2
COMMENTS
The square root of the g.f. of this sequence is an integer series (cf. A261594).
LINKS
Ville Salo, Decidability and Universality of Quasiminimal Subshifts, arXiv:1411.6644 [math.DS], 2014-2015.
FORMULA
a(n) ~ 2^(n*(n-1)). - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 80*x^3 + 4381*x^4 + 1069742*x^5 +...
MATHEMATICA
Table[Sum[Binomial[n, k]*2^(2*Binomial[k, 2]), {k, 0, n}], {n, 0, 25}] (* G. C. Greubel, Nov 07 2016 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*2^(k*(k-1)))}
CROSSREFS
Cf. A261594; variants: A006896, A135755.
Sequence in context: A326262 A071409 A232041 * A263368 A208806 A319144
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2007
STATUS
approved