OFFSET
1,1
EXAMPLE
a(1) = 10 = 4 + 6.
a(2) = 15 = 6 + 9.
a(3) = 19 = 9 + 10 = 4 + 6 + 9.
a(4) = 24 = 10 + 14.
a(5) = 25 = 6 + 9 + 10.
a(6) = 29 = 14 + 15 = 4 + 6 + 9 + 10.
a(7) = 33 = 9 + 10 + 14.
a(8) = 36 = 15 + 21.
a(9) = 39 = 10 + 14 + 15.
a(10) = 43 = 21 + 22.
MAPLE
isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true; else false ; fi ; end: A001358 := proc(n) option remember ; local a; if n <= 3 then op(n, [4, 6, 9]) ; else a := A001358(n-1)+1 ; while not isA001358(a) do a := a+1 ; od ; RETURN(a) ; fi ; end: isA135363 := proc(n) local frst, lst, psum ; for frst from 1 do if A001358(frst) >= n then RETURN(false) ; fi ; for lst from frst+1 do psum := add(A001358(k), k=frst..lst) ; if psum = n then RETURN(true) ; elif psum > n then break ; fi ; od: od: end: for n from 4 to 200 do if isA135363(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Dec 11 2007
MATHEMATICA
okQ[n_] := With[{SP = Select[Range[n], PrimeOmega[#] == 2 &]}, Select[IntegerPartitions[n, {2, Infinity}, SP], SequencePosition[SP, Reverse@#] != {}&]] != {};
Reap[For[k = 10, k < 200, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jan 29 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 09 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Dec 11 2007
STATUS
approved