login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135363
Sums of two or more consecutive semiprimes.
1
10, 15, 19, 24, 25, 29, 33, 36, 39, 43, 47, 48, 50, 51, 54, 58, 59, 60, 67, 68, 69, 72, 73, 75, 77, 79, 82, 83, 84, 85, 91, 93, 94, 95, 97, 100, 101, 102, 106, 107, 109, 112, 115, 116, 118, 120, 122, 123, 126, 127, 128, 133, 134, 140, 142, 143, 146, 148, 151, 152
OFFSET
1,1
COMMENTS
This is to A050936 as A001358 is to A000040.
EXAMPLE
a(1) = 10 = 4 + 6.
a(2) = 15 = 6 + 9.
a(3) = 19 = 9 + 10 = 4 + 6 + 9.
a(4) = 24 = 10 + 14.
a(5) = 25 = 6 + 9 + 10.
a(6) = 29 = 14 + 15 = 4 + 6 + 9 + 10.
a(7) = 33 = 9 + 10 + 14.
a(8) = 36 = 15 + 21.
a(9) = 39 = 10 + 14 + 15.
a(10) = 43 = 21 + 22.
MAPLE
isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true; else false ; fi ; end: A001358 := proc(n) option remember ; local a; if n <= 3 then op(n, [4, 6, 9]) ; else a := A001358(n-1)+1 ; while not isA001358(a) do a := a+1 ; od ; RETURN(a) ; fi ; end: isA135363 := proc(n) local frst, lst, psum ; for frst from 1 do if A001358(frst) >= n then RETURN(false) ; fi ; for lst from frst+1 do psum := add(A001358(k), k=frst..lst) ; if psum = n then RETURN(true) ; elif psum > n then break ; fi ; od: od: end: for n from 4 to 200 do if isA135363(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Dec 11 2007
MATHEMATICA
okQ[n_] := With[{SP = Select[Range[n], PrimeOmega[#] == 2 &]}, Select[IntegerPartitions[n, {2, Infinity}, SP], SequencePosition[SP, Reverse@#] != {}&]] != {};
Reap[For[k = 10, k < 200, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jan 29 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 09 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Dec 11 2007
STATUS
approved