login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sums of two or more consecutive semiprimes.
1

%I #9 Jan 29 2024 15:36:13

%S 10,15,19,24,25,29,33,36,39,43,47,48,50,51,54,58,59,60,67,68,69,72,73,

%T 75,77,79,82,83,84,85,91,93,94,95,97,100,101,102,106,107,109,112,115,

%U 116,118,120,122,123,126,127,128,133,134,140,142,143,146,148,151,152

%N Sums of two or more consecutive semiprimes.

%C This is to A050936 as A001358 is to A000040.

%e a(1) = 10 = 4 + 6.

%e a(2) = 15 = 6 + 9.

%e a(3) = 19 = 9 + 10 = 4 + 6 + 9.

%e a(4) = 24 = 10 + 14.

%e a(5) = 25 = 6 + 9 + 10.

%e a(6) = 29 = 14 + 15 = 4 + 6 + 9 + 10.

%e a(7) = 33 = 9 + 10 + 14.

%e a(8) = 36 = 15 + 21.

%e a(9) = 39 = 10 + 14 + 15.

%e a(10) = 43 = 21 + 22.

%p isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true; else false ; fi ; end: A001358 := proc(n) option remember ; local a; if n <= 3 then op(n,[4,6,9]) ; else a := A001358(n-1)+1 ; while not isA001358(a) do a := a+1 ; od ; RETURN(a) ; fi ; end: isA135363 := proc(n) local frst,lst, psum ; for frst from 1 do if A001358(frst) >= n then RETURN(false) ; fi ; for lst from frst+1 do psum := add(A001358(k),k=frst..lst) ; if psum = n then RETURN(true) ; elif psum > n then break ; fi ; od: od: end: for n from 4 to 200 do if isA135363(n) then printf("%d, ",n) ; fi ; od: # _R. J. Mathar_, Dec 11 2007

%t okQ[n_] := With[{SP = Select[Range[n], PrimeOmega[#] == 2 &]}, Select[IntegerPartitions[n, {2, Infinity}, SP], SequencePosition[SP, Reverse@#] != {}&]] != {};

%t Reap[For[k = 10, k < 200, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, Jan 29 2024 *)

%Y Cf. A000040, A001358, A050936.

%K easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Dec 09 2007

%E Corrected and extended by _R. J. Mathar_, Dec 11 2007