login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134762
a(n) = 3*A000984(n) - 2.
4
1, 4, 16, 58, 208, 754, 2770, 10294, 38608, 145858, 554266, 2116294, 8112466, 31201798, 120349798, 465352558, 1803241168, 7000818658, 27225405898, 106035791398, 413539586458, 1614773623318, 6312296891158, 24700292182798, 96742811049298, 379231819313254
OFFSET
0,2
COMMENTS
Second inverse binomial transform of the sequence = A134763, (same as a(n) but with interpolated two's).
LINKS
FORMULA
G.f.: 3/sqrt(1-4*x) - 2/(1-x). - Sergei N. Gladkovskii, Nov 21 2013
From G. C. Greubel, May 28 2024: (Start)
a(n) = 3*(n+1)*A000108(n) - 2.
a(n) = (2*(2*n-1)*a(n-1) + 2*(3*n-2))/n.
E.g.f.: 3*exp(2*x)*BesselI(0, 2*x) - 2*exp(x). (End)
MATHEMATICA
Table[3*Binomial[2*n, n]-2, {n, 0, 40}] (* G. C. Greubel, May 28 2024 *)
PROG
(PARI) a(n) = 3*binomial(2*n, n) - 2; \\ Michel Marcus, Nov 22 2013
(Magma) [3*(n+1)*Catalan(n)-2: n in [0..40]]; // G. C. Greubel, May 28 2024
(SageMath) [3*binomial(2*n, n) -2 for n in range(41)] # G. C. Greubel, May 28 2024
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Nov 09 2007
EXTENSIONS
More terms from Michel Marcus, Nov 22 2013
STATUS
approved