login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134582 a(n) = (2*n)^2 - 4. 3
0, 12, 32, 60, 96, 140, 192, 252, 320, 396, 480, 572, 672, 780, 896, 1020, 1152, 1292, 1440, 1596, 1760, 1932, 2112, 2300, 2496, 2700, 2912, 3132, 3360, 3596, 3840, 4092, 4352, 4620, 4896, 5180, 5472, 5772, 6080, 6396, 6720, 7052, 7392, 7740, 8096, 8460 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the first Zagreb index of the friendship graph F[n-1]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. The friendship graph (or Dutch windmill graph) F[n] can be constructed by joining n copies of the cycle graph C[3] with a common vertex. a(3) = 32. Indeed, the friendship graph F[2] has 2 edges with end-point degrees 2,2 and 4 edges with end-point degrees 2,4. Then the first Zagreb index is 2*4 + 4*6 = 32. - Emeric Deutsch, Nov 09 2016

a(n) is also the number of edges of the Aztec diamond AZ(n-1), (n>=2), (see Lemma 2.2 of the Imran et al. paper. - Emeric Deutsch, Sep 23 2017

REFERENCES

M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), 26 (4), 1407-1412, 2014.

LINKS

Table of n, a(n) for n=1..46.

R. E. Borcherds, E. Freitag, R. Weissauer, A Siegel cusp form of degree 12 and weight 12, arXiv:math/9805132, row A_2 page 6.

Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081, 2014

Wikipedia, Friendship graph

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

From R. J. Mathar, Jan 24 2008: (Start)

O.g.f.: 4 - 12/(-1+x)^2 - 8/(-1+x)^3.

a(n) = 4*A005563(n-1). (End)

a(n) = a(n-1) + 8*n - 4 (with a(1)=0). - Vincenzo Librandi, Nov 23 2010

MAPLE

seq((2*k)^2-4, k=1..46);

MATHEMATICA

lst={}; Do[AppendTo[lst, (2*n)^2-4], {n, 1, 5!}]; lst...and/or... s=-4; lst={}; Do[s+=n+1; AppendTo[lst, s], {n, 3, 6!, 8}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)

PROG

(PARI) a(n)=(2*n)^2-4 \\ Charles R Greathouse IV, Jun 16 2017

CROSSREFS

Sequence in context: A051519 A305074 A166959 * A177721 A081268 A332595

Adjacent sequences:  A134579 A134580 A134581 * A134583 A134584 A134585

KEYWORD

nonn,easy

AUTHOR

Zerinvary Lajos, Jan 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 06:21 EDT 2021. Contains 347551 sequences. (Running on oeis4.)