login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134450 a(n) = square part of discriminant of Brioschi quintic polynomial x^5-10*n*x^3+45*n^2*x-n^2. 1
43175, 1382000, 10495575, 44230400, 134984375, 335890800, 726002375, 1415475200, 2550752775, 4319750000, 6957037175, 10749024000, 16039143575, 23233036400, 32803734375, 45296844800, 61335734375, 81626713200, 106964218775, 138236000000, 176428301175 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The squarefree part is always 5.

REFERENCES

Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012.

LINKS

Table of n, a(n) for n=1..21.

Matthew Moore, Theorems and Algorithms Associated with Solving the General Quintic [Appears to give incorrect formula for the Brioschi quintic]

Tito Piezas III and Eric Weisstein's World of Mathematics, Brioschi Quintic Form

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n)=25n^4(1728n-1). - Klaus Brockhaus.

G.f.: 25*x*(1729*x^4 + 44938*x^3+114048*x^2+44918*x+1727) / (x-1)^6. - Colin Barker, Sep 02 2013

MATHEMATICA

Table[25n^4(1728n-1), {n, 1, 100}]

CROSSREFS

Cf. A134448.

Sequence in context: A205733 A205914 A205906 * A141085 A151623 A151660

Adjacent sequences:  A134447 A134448 A134449 * A134451 A134452 A134453

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Oct 26 2007, Oct 28 2007

EXTENSIONS

Corrected by Klaus Brockhaus, Oct 28 2007

More terms from Colin Barker, Sep 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 16:50 EDT 2020. Contains 337291 sequences. (Running on oeis4.)