login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A134448
a(n) = discriminant of Brioschi quintic polynomial x^5 - 10*n*x^3 + 45*n^2*x - n^2.
1
9320403125, 9549620000000, 550785472903125, 9781641420800000, 91103907470703125, 564113147623200000, 2635397242528203125, 10017850209075200000, 32531698595851003125, 93301200312500000000, 242001831271659903125, 577707584762880000000, 1286270633097318903125
OFFSET
1,1
LINKS
Matthew Moore, Theorems and Algorithms Associated with Solving the General Quintic [Appears to give incorrect formula for the Brioschi quintic]
Eric Weisstein's World of Mathematics, Brioschi Quintic Form.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
The discriminant is 5^5*n^8*(-1+1728n)^2. - Klaus Brockhaus, Oct 28 2007
G.f.: -3125*x*(2989441*x^9 +3026533493*x^8 +142898228696*x^7 +1359450487664*x^6 +3912930922946*x^5 +3912461211074*x^4 +1358941584752*x^3 +142800728024*x^2 +3023070581*x +2982529) / (x -1)^11. - Colin Barker, Sep 02 2013
MATHEMATICA
Discriminant[p_?PolynomialQ, x_] := With[{n = Exponent[p, x], k = Exponent[D[p, x], x]}, Cancel[((-1)^(n(n - 1)/2)Resultant[ p, D[p, x], x]) Coefficient[p, x, n]^(n - k - 2)]] ; Table[Discriminant[x^5 - 10p x^3 + 45p^2 x - p^2, x], {p, 1, 20}]
PROG
(PARI) a(n) = poldisc(x^5 - 10*n*x^3 + 45*n^2*x - n^2); \\ Michel Marcus, Mar 02 2023
CROSSREFS
Cf. A134450.
Sequence in context: A216014 A375862 A178558 * A048053 A130429 A130430
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 26 2007, Oct 28 2007
EXTENSIONS
Corrected by Klaus Brockhaus, Oct 28 2007
More terms from Colin Barker, Sep 02 2013
STATUS
approved