login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = square root of the square part of discriminant of Brioschi quintic polynomial x^5-10*n*x^3+45*n^2*x-n^2.
1

%I #41 Mar 02 2023 11:25:42

%S 43175,1382000,10495575,44230400,134984375,335890800,726002375,

%T 1415475200,2550752775,4319750000,6957037175,10749024000,16039143575,

%U 23233036400,32803734375,45296844800,61335734375,81626713200,106964218775,138236000000,176428301175

%N a(n) = square root of the square part of discriminant of Brioschi quintic polynomial x^5-10*n*x^3+45*n^2*x-n^2.

%C The squarefree part is always 5.

%H Matthew Moore, <a href="https://web.archive.org/web/20211016014955/https://www.math.arizona.edu/~ura-reports/053/Moore.Matthew/Final.pdf">Theorems and Algorithms Associated with Solving the General Quintic</a> [Appears to give incorrect formula for the Brioschi quintic]

%H Tito Piezas III and Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BrioschiQuinticForm.html">Brioschi Quintic Form</a>.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n) = 25*n^4*(1728*n-1). - _Klaus Brockhaus_, Oct 28 2007

%F G.f.: 25*x*(1729*x^4 + 44938*x^3+114048*x^2+44918*x+1727) / (x-1)^6. - _Colin Barker_, Sep 02 2013

%t Table[25n^4(1728n-1),{n,1,100}]

%o (PARI) a(n) = my(p=poldisc(x^5 - 10*n*x^3 + 45*n^2*x - n^2)); sqrtint(p/core(p)); \\ _Michel Marcus_, Mar 02 2023

%Y Cf. A134448.

%K nonn,easy

%O 1,1

%A _Artur Jasinski_, Oct 26 2007, Oct 28 2007

%E Corrected by _Klaus Brockhaus_, Oct 28 2007

%E More terms from _Colin Barker_, Sep 02 2013

%E Name corrected by _Amiram Eldar_, Mar 02 2023