login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134100
Primes p > 3 such that neither p-2 nor p-4 are prime.
5
29, 37, 53, 59, 67, 79, 89, 97, 127, 137, 149, 157, 163, 173, 179, 191, 211, 223, 239, 251, 257, 263, 269, 277, 293, 307, 331, 337, 347, 359, 367, 373, 379, 389, 397, 409, 419, 431, 439, 449, 457, 479, 487, 499, 509, 521, 541, 547, 557, 563, 569, 577, 587
OFFSET
1,1
COMMENTS
Upper primes after a prime gap of 6 or larger (Union of A031925, A031927, A031929, ...) - R. J. Mathar, Mar 15 2012
LINKS
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Oct 27 2021
EXAMPLE
29 is a term because 29 follows the odd nonprime 27 which in turn follows the odd nonprime 25.
MATHEMATICA
Select[Range[5, 1000, 2], PrimeQ[#]&&!PrimeQ[#-2]&&!PrimeQ[#-4]&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
PROG
(PARI) forprime(p=5, 600, if(!isprime(p-2) && !isprime(p-4), print1(p, ", "))); \\ Joerg Arndt, Oct 27 2021
(PARI) list(lim)=my(v=List(), p=23); forprime(q=29, lim, if(q-p>4, listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Oct 27 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Oct 08 2007
EXTENSIONS
Name corrected by Michel Marcus and Amiram Eldar, Oct 27 2021
STATUS
approved