login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177873 Primes p such that p is a quadratic residue modulo reverse(p) and reverse(p) is a quadratic residue modulo p. 1
29, 37, 47, 73, 79, 83, 97, 113, 149, 163, 167, 263, 277, 283, 311, 317, 349, 359, 389, 421, 433, 449, 461, 509, 521, 607, 617, 641, 761, 941, 953, 983, 1009, 1021, 1031, 1033, 1069, 1097, 1109, 1153, 1181, 1193, 1201, 1213, 1231, 1237, 1283, 1301, 1321 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Primes in A177872, excluding the palindromic primes A002385.
LINKS
Eric W. Weisstein, Quadratic Residue
Eric W. Weisstein, Jacobi Symbol
EXAMPLE
Prime 317 is in the sequence because J(317, 713) = J(713, 317) = 1 where J is the Jacobi symbol.
MAPLE
with(numtheory): for n from 1 to 2500 do: s:=0:l:=length(n):for q from 0 to l do:x:=iquo(n, 10^q):y:=irem(x, 10):s:=s+y*10^(l-1-q): od: if s<>n and quadres(n, s)=1 and quadres(s, n)=1 and type(n, prime)=true then printf(`%d, `, n):else fi:od:
CROSSREFS
Sequence in context: A255204 A049746 A097997 * A234973 A134100 A060769
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 13 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 14:57 EST 2024. Contains 370433 sequences. (Running on oeis4.)