The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177873 Primes p such that p is a quadratic residue modulo reverse(p) and reverse(p) is a quadratic residue modulo p. 1
 29, 37, 47, 73, 79, 83, 97, 113, 149, 163, 167, 263, 277, 283, 311, 317, 349, 359, 389, 421, 433, 449, 461, 509, 521, 607, 617, 641, 761, 941, 953, 983, 1009, 1021, 1031, 1033, 1069, 1097, 1109, 1153, 1181, 1193, 1201, 1213, 1231, 1237, 1283, 1301, 1321 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes in A177872, excluding the palindromic primes A002385. LINKS Table of n, a(n) for n=1..49. Eric W. Weisstein, Quadratic Residue Eric W. Weisstein, Jacobi Symbol EXAMPLE Prime 317 is in the sequence because J(317, 713) = J(713, 317) = 1 where J is the Jacobi symbol. MAPLE with(numtheory): for n from 1 to 2500 do: s:=0:l:=length(n):for q from 0 to l do:x:=iquo(n, 10^q):y:=irem(x, 10):s:=s+y*10^(l-1-q): od: if s<>n and quadres(n, s)=1 and quadres(s, n)=1 and type(n, prime)=true then printf(`%d, `, n):else fi:od: CROSSREFS Cf. A177872, A178399. Sequence in context: A255204 A049746 A097997 * A234973 A134100 A060769 Adjacent sequences: A177870 A177871 A177872 * A177874 A177875 A177876 KEYWORD nonn,base AUTHOR Michel Lagneau, Dec 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 1 14:57 EST 2024. Contains 370433 sequences. (Running on oeis4.)