login
A177873
Primes p such that p is a quadratic residue modulo reverse(p) and reverse(p) is a quadratic residue modulo p.
1
29, 37, 47, 73, 79, 83, 97, 113, 149, 163, 167, 263, 277, 283, 311, 317, 349, 359, 389, 421, 433, 449, 461, 509, 521, 607, 617, 641, 761, 941, 953, 983, 1009, 1021, 1031, 1033, 1069, 1097, 1109, 1153, 1181, 1193, 1201, 1213, 1231, 1237, 1283, 1301, 1321
OFFSET
1,1
COMMENTS
Primes in A177872, excluding the palindromic primes A002385.
LINKS
Eric W. Weisstein, Quadratic Residue
Eric W. Weisstein, Jacobi Symbol
EXAMPLE
Prime 317 is in the sequence because J(317, 713) = J(713, 317) = 1 where J is the Jacobi symbol.
MAPLE
with(numtheory): for n from 1 to 2500 do: s:=0:l:=length(n):for q from 0 to l do:x:=iquo(n, 10^q):y:=irem(x, 10):s:=s+y*10^(l-1-q): od: if s<>n and quadres(n, s)=1 and quadres(s, n)=1 and type(n, prime)=true then printf(`%d, `, n):else fi:od:
CROSSREFS
Sequence in context: A255204 A049746 A097997 * A234973 A134100 A060769
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 13 2010
STATUS
approved