

A133923


a(1)=1, and for n>1, a(n) = a(n1)/2, if a(n1) is divisible by 2, otherwise a(n) = A000005(n*a(n1)).


1



1, 2, 1, 3, 4, 2, 1, 4, 2, 1, 2, 1, 2, 1, 4, 2, 1, 6, 3, 12, 6, 3, 4, 2, 1, 4, 2, 1, 2, 1, 2, 1, 4, 2, 1, 9, 6, 3, 6, 3, 4, 2, 1, 6, 3, 8, 4, 2, 1, 6, 3, 12, 6, 3, 8, 4, 2, 1, 2, 1, 2, 1, 6, 3, 8, 4, 2, 1, 4, 2, 1, 12, 6, 3, 9, 18, 9, 16, 8, 4, 2, 1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 6, 3, 8, 4, 2, 1, 6, 3, 18
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The formula could be generalized to a class of sequences as a(n)= A000005(A*a(n1)+B) if a(n1) is not divisible by C, else a(n)= a(n1)/C, where A, B, C are integers. In this case we have A=n, B=0 and C=2.


LINKS

Table of n, a(n) for n=1..100.


PROG

(MIT Scheme:) (define (A133923 n) (cond ((< n 2) n) ((even? (A133923 (1+ n))) (/ (A133923 (1+ n)) 2)) (else (A000005 (* n (A133923 (1+ n)))))))


CROSSREFS

Cf. A000005.
Sequence in context: A229287 A286539 A004741 * A341231 A334081 A125158
Adjacent sequences: A133920 A133921 A133922 * A133924 A133925 A133926


KEYWORD

nonn


AUTHOR

Ctibor O. Zizka, Jan 07 2008


EXTENSIONS

Edited, corrected, extended and Schemecode added by Antti Karttunen, Oct 05 2009


STATUS

approved



