login
A133920
Decimal expansion of the first real inflection point of the jinc function.
1
2, 2, 9, 9, 9, 1, 0, 3, 3, 0, 2, 2, 8, 4, 1, 0, 9, 1, 4, 9, 5, 8, 1, 1, 0, 6, 9, 1, 0, 5, 0, 6, 2, 5, 4, 4, 7, 2, 6, 5, 6, 7, 3, 2, 9, 0, 3, 6, 5, 8, 0, 5, 6, 1, 1, 2, 7, 4, 9, 9, 5, 5, 1, 6, 1, 6, 8, 6, 9, 1, 6, 3, 7, 5, 0, 5, 3, 5, 7, 5, 9, 3, 8, 7, 0, 9, 1, 9, 4, 9, 8, 9, 6, 3, 9, 6, 8, 2, 6, 0, 6, 9, 4, 1, 2
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Jinc Function
EXAMPLE
2.2999103302284109149...
MATHEMATICA
x0 = x /. FindRoot[3x*BesselJ[0, x] + (x^2 - 6)*BesselJ[1, x] == 0, {x, 2}, WorkingPrecision -> 105]; RealDigits[x0][[1]] (* Jean-François Alcover, Oct 26 2012, after Eric W. Weisstein *)
PROG
(PARI) solve(x=2, 3, 3*x*besselj(0, x)+(x^2-6)*besselj(1, x)) \\ Charles R Greathouse IV, Feb 19 2014
CROSSREFS
Sequence in context: A203904 A104681 A056856 * A229594 A059199 A010765
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 28 2007
STATUS
approved