login
A133811
Numbers that are primally tight and have strictly ascending powers.
7
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 162, 163, 167, 169, 173, 179, 181, 191
OFFSET
1,2
COMMENTS
All numbers of the form p_1^k1*p_2^k2*...*p_n^k_n, where k1 < k2 < ... < k_n and the p_i are n successive primes.
Subset of A073491, A133810.
Different from A082377 starting n=16.
Different from A000961 (prime powers) starting n=13.
LINKS
PROG
(Haskell)
a133811 n = a133811_list !! (n-1)
a133811_list = 1 : filter f [2..] where
f x = (and $ zipWith (<) eps $ tail eps) &&
(all (== 1) $ zipWith (-) (tail ips) ips)
where ips = map a049084 $ a027748_row x
eps = a124010_row x
-- Reinhard Zumkeller, Nov 07 2012
(PARI) isok(n) = {my(f = factor(n)); my(nbf = #f~); my(lastp = 0); for (i=1, nbf, if (lastp && (f[i, 1] != nextprime(lastp+1)), return (0)); lastp = f[i, 1]; ); for (j=2, nbf, if (f[j, 2] <= f[j-1, 2], return (0)); ); return (1); } \\ Michel Marcus, Jun 04 2014
KEYWORD
nonn
AUTHOR
Olivier Gérard, Sep 23 2007
STATUS
approved