login
A133784
Positive integers n such that the sum of all primes <= n divides n(n+1)/2.
2
4, 21, 24, 71
OFFSET
1,1
COMMENTS
Also, positive integers n for which the sum of all primes <= n divides the sum of all nonprimes <= n.
Is this sequence finite?
No other terms below 10^13. - Max Alekseyev, Nov 28 2017
Sequence is probably complete; integral_{x=10^10..infinity} (2 log x)/x^2 dx = 4.80517... * 10^-9. - Charles R Greathouse IV, Mar 21 2013
EXAMPLE
n=21 is in this sequence since the sum of the primes <=21 is 2+3+5+7+11+13+17+19=77 and 77 divides 21*22/2=231.
MAPLE
P:=proc(n) local i, snp, sp; snp:=1; sp:=2; for i from 3 by 1 to n do if isprime(i) then sp:=sp+i; else snp:=snp+i; fi; if trunc(snp/sp)=snp/sp then print(i); fi; od; end: P(10000000);
MATHEMATICA
Select[Range[2, 100], Divisible[(#(#+1))/2, Total[Prime[Range[ PrimePi[ #]]]]]&] (* Harvey P. Dale, May 31 2012 *)
PROG
(PARI) A=1; P=0; for(n=2, 1e9, A+=n; P+=isprime(n)*n; if(A%P==0, print1(n", "))) \\ Charles R Greathouse IV, Mar 21 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Max Alekseyev, Feb 13 2009
STATUS
approved