login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133693
Expansion of (1 - phi(-q) * phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.
1
1, -1, 2, -1, 0, -2, 0, -1, 3, 0, 2, -2, 0, 0, 0, -1, 2, -3, 2, 0, 0, -2, 0, -2, 1, 0, 4, 0, 0, 0, 0, -1, 4, -2, 0, -3, 0, -2, 0, 0, 2, 0, 2, -2, 0, 0, 0, -2, 1, -1, 4, 0, 0, -4, 0, 0, 4, 0, 2, 0, 0, 0, 0, -1, 0, -4, 2, -2, 0, 0, 0, -3, 2, 0, 2, -2, 0, 0, 0, 0
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n nonzero, a(n) is nonzero if and only if n is in A002479.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1 - eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2)) / 2 in powers of q.
Moebius transform is period 16 sequence [ 1, -2, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0, -1, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 if e>0, a(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8), a(p^e) = e + 1 if p == 1, 3 (mod 8).
a(8*n + 5) = a(8*n + 7) = 0. A133692(n) = -2 * a(n) unless n=0. a(n) = -(-1)^n * A002325(n). a(2*n + 1) = A113411(n).
EXAMPLE
G.f. = q - q^2 + 2*q^3 - q^4 - 2*q^6 - q^8 + 3*q^9 + 2*q^11 - 2*q^12 - q^16 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Oct 30 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker( -2, d)))};
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Sep 20 2007
STATUS
approved