login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133576
Numbers which are sums of consecutive composites.
3
4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81
OFFSET
1,1
COMMENTS
This is to composites A002808 as A034707 is to primes A000040. The complement of this sequence, numbers which are not sums of consecutive composites, begins 1, 2, 3, 5, 7, ... (A140464).
EXAMPLE
Every composite is in this sequence as one consecutive composite. We account for primes thus:
a(10) = 17 = 8 + 9.
a(12) = 19 = 9 + 10.
a(16) = 23 = 6 + 8 + 9.
a(22) = 29 = 14 + 15.
a(24) = 31 = 9 + 10 + 12.
a(30) = 37 = 4 + 6 + 8 + 9 + 10.
a(34) = 41 = 20 + 21 = 12 + 14 + 15.
a(36) = 43 = 21 + 22.
Not included = 47.
a(45) = 53 = 26 + 27 = 8 + 9 + 10 + 12 + 14.
a(51) = 59 = 18 + 20 + 21 = 6 + 8 + 9 + 10 + 12 + 14.
Not included = 61.
a(58) = 67 = 33 + 34 = 21 + 22 + 24 = 10 + 12 + 14 + 15 + 16.
a(62) = 71 = 35 + 36 = 22 + 24 + 25 = 4 + 6 + 8 + 9 + 10 + 12 + 14.
Not included = 73.
a(69) = 79 = 39 + 40.
a(73) = 83 = 14 + 15 + 16 + 18 + 20.
a(79) = 89 = 44 + 45.
a(87) = 97 = 48 + 49 = 22 + 24 + 25 + 26.
a(91) = 101 = 50 + 51.
a(93) = 103 = 51 + 52.
MAPLE
isA133576 := proc(n)
local i, j ;
for i from 1 do
if A002808(i) > n then
return false;
end if;
for j from i do
s := add( A002808(l), l=i..j) ;
if s > n then
break;
elif s = n then
return true;
end if;
end do:
end do:
end proc:
A133576 := proc(n)
local a;
if n = 1 then
return A002808(1) ;
else
for a from procname(n-1)+1 do
if isA133576(a) then
return a;
end if;
end do:
end if ;
end proc:
seq(A133576(n), n=1..71) ; # R. J. Mathar, Feb 14 2015
MATHEMATICA
okQ[n_] := If[CompositeQ[n], True, MemberQ[IntegerPartitions[n, All, Select[Range[n], CompositeQ]], p_List /; Length[p] == Length[Union[p]] && AllTrue[Complement[Range[p[[-1]], p[[1]]], p], PrimeQ]]];
Select[Range[150], okQ] (* Jean-François Alcover, Oct 27 2023 *)
CROSSREFS
Cf. A002808, A034707, A037174, A140464 (complement).
Sequence in context: A137353 A336371 A167376 * A192607 A088224 A002808
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 26 2007
STATUS
approved