login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133573
Expansion of ( 5 * phi(-q^5)^2 - phi(-q)^2 ) / 4 in powers of q where phi() is a Ramanujan theta function.
3
1, 1, -1, 0, -1, -3, 0, 0, -1, 1, 3, 0, 0, 2, 0, 0, -1, 2, -1, 0, 3, 0, 0, 0, 0, -7, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, 3, 2, 0, 0, 0, -3, 0, 0, 0, 1, 7, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, -6, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, 3, 1, -2, 0, 0, -6, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 2, -1, 0, 7, 2, 0, 0, -2
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Multiplicative because this sequence is the inverse Moebius transform of a multiplicative sequence. - Andrew Howroyd, Aug 06 2018
LINKS
Shaun Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328; see p. 313, eq. (2.5).
Li-Chien Shen, On the additive formulas of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5, Trans. Amer. Math. Soc. 345 (1994), no. 1, 323-345; see p. 335, eq. (3.5), p. 342, eq. (3.42).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2)^3 * eta(q^5) / ( eta(q) * eta(q^10) ) in powers of q.
Euler transform of period 10 sequence [ 1, -2, 1, -2, 0, -2, 1, -2, 1, -2, ...].
Moebius transform is period 40 sequence [ 1, -2, -1, 0, -4, 2, -1, 0, 1, 8, -1, 0, 1, 2, 4, 0, 1, -2, -1, 0, 1, 2, -1, 0, -4, -2, -1, 0, 1, -8, -1, 0, 1, -2, 4, 0, 1, 2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 20 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122190.
a(n) = (-1)^n * A133574(n). a(2*n) = A133574(n). a(4*n + 1) = A214316(n). a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = a(n). - Michael Somos, Jul 12 2012
Sum_{k=1..n} abs(a(k)) ~ (8*Pi/25) * n. - Amiram Eldar, Jan 27 2024
EXAMPLE
1 + q - q^2 - q^4 - 3*q^5 - q^8 + q^9 + 3*q^10 + 2*q^13 - q^16 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (5 EllipticTheta[ 4, 0, q^5]^2 - EllipticTheta[ 4, 0, q]^2)/4, {q, 0, n}] (* Michael Somos, Jul 12 2012 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^2 QPochhammer[ q^5, q^10] / QPochhammer[ q, q^2], {q, 0, n}] (* Michael Somos, Jul 12 2012 *)
PROG
(PARI) {a(n) = if( n<1, n==0, (-1)^n * sumdiv(n, d, if( d%5==0, kronecker(-4, d/5) * 5) - kronecker(-4, d)))}
(PARI) {a(n) = local(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5+A) / (eta(x + A) * eta(x^10 + A)), n))}
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Sep 17 2007
STATUS
approved